Selection of Statistical Software for Solving Big Data Problems
نویسندگان
چکیده
منابع مشابه
A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملStatistical model selection with “Big Data”
Big Data offer potential benefits for statistical modelling, but confront problems like an excess of false positives, mistaking correlations for causes, ignoring sampling biases, and selecting by inappropriate methods. We consider the many important requirements when searching for a data-based relationship using Big Data, and the possible role of Autometrics in that context. Paramount considera...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملStatistical Inference for Big Data Problems in Molecular Biophysics
We highlight the role of statistical inference techniques in providing biological insights from analyzing long time-scale molecular simulation data. Technological and algorithmic improvements in computation have brought molecular simulations to the forefront of techniques applied to investigating the basis of living systems. These longer, increasingly complex simulations are reaching petabyte s...
متن کاملan adaptive approach to increase accuracy of forward algorithm for solving evaluation problems on unstable statistical data set
nowadays, hidden markov models are extensively utilized for modeling stochastic processes. these models help researchers establish and implement the desired theoretical foundations using markov algorithms such as forward one. however, using stability hypothesis and the mean statistic for determining the values of markov functions on unstable statistical data set has led to a significant reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SAGE Open
سال: 2015
ISSN: 2158-2440,2158-2440
DOI: 10.1177/2158244015584379